

Topics in Machine Learning Machine Learning for Healthcare

Rahul G. Krishnan
Assistant Professor
Computer science & Laboratory Medicine and Pathobiology

Last week

- Supervised machine learning
- Risk stratification
 - Stratification as a prediction problem
 - Case study: Predicting the onset of diabetes

Outline

- Clarification to questions
- Risk stratification
 - Deriving labels
 - Evaluating models
- Survival analysis:
 - From binary to continuous valued outcomes
 - Parametric
 - Non-parametric
 - Semi-parametric

Questions from last week

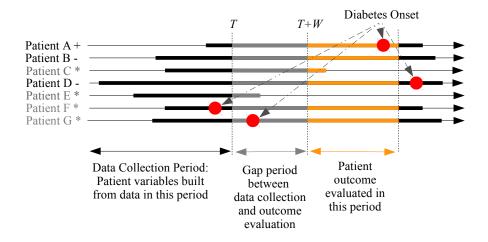
- Is there structure among diagnosis codes:
 - Yes! They are organized in a hierarchy. View ICD10 codes <u>here</u>

ICD-10-CM Codes > E00-E89 Endocrine, nutritional and metabolic diseases > E08-E13 Diabetes mellitus > Type 2 diabetes mellitus E11

Type 2 diabetes mellitus E11-

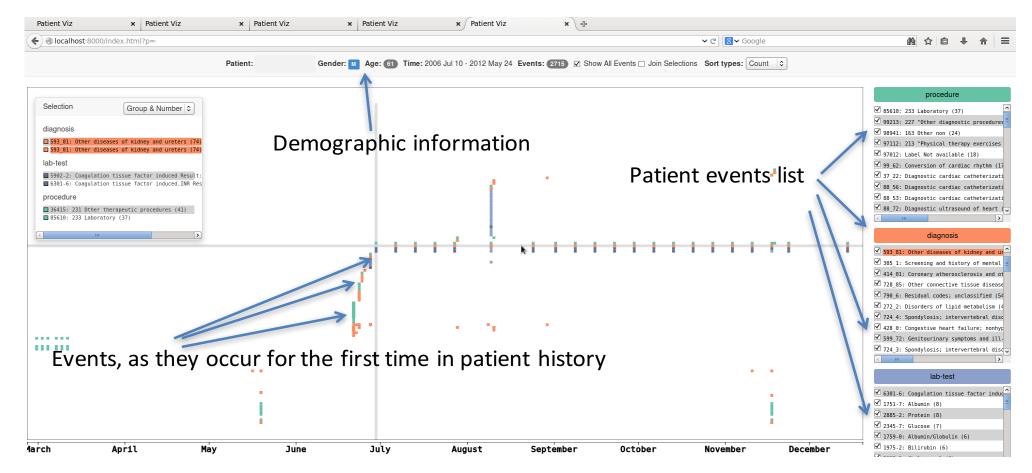
- Using predictive models in the future (on different data):
 - Non-stationarity of data is a challenging problem
 - Means that data distribution changes in unpredictable ways over time
 - Covariate shift can tank good machine learning models deployed in clinics
 - Still a lot of research on good techniques for detection of covariate shift

Deriving labels for risk stratification



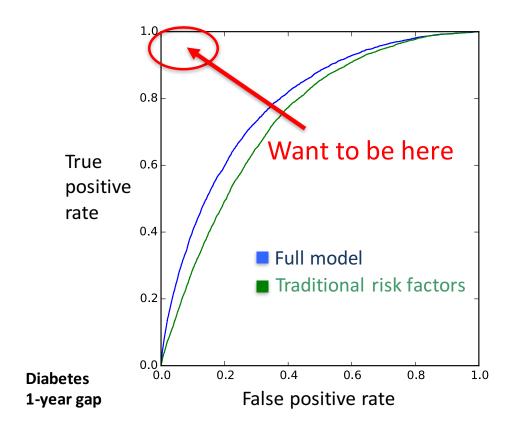
- Typically done via chart review
- Work with doctor to assess criteria that constitute Diabetic Onset
 - e.g. does the patient have ICD10 code for diabetes

Evaluation of risk stratification models



https://github.com/nyuvis/patient-viz

Evaluation of risk stratification models



AUC = Area under the ROC curve

Invariant to class imbalance
 Interpretable as the probability that an algorithm ranks a positive patient over a negative patient

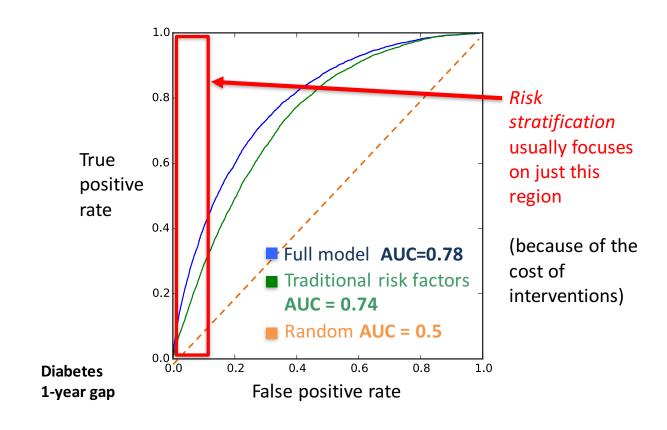
$$TPR = rac{TP}{Actual \, Positive} = rac{TP}{TP + FN}$$

$$FNR = rac{FN}{Actual \, Positive} = rac{FN}{TP + FN}$$

$$TNR = rac{TN}{Actual \, Negative} = rac{TN}{TN + FP}$$

$$FPR = rac{FP}{Actual \, Negative} = rac{FP}{TN + FP}$$

Where you want to be on ROC curve



Many other important statistical considerations when building models

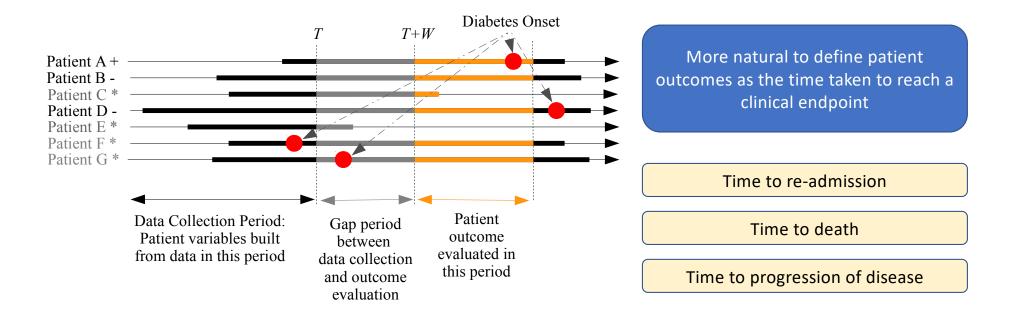
- Calibration
- Sensitivity analysis
- Error bars and confidence intervals on prediction estimates
- Heterogeneity of results:
 - Does the model only work well for a subpopulation?
- Model introspection:
 - For a linear model, are the features used by the models the ones you might expect?
 - Do root nodes in a decision tree make sense?
 - More challenging to do for deep neural networks

The importance of interpretability

- Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission, Caruana et. Al, KDD 2015
- Used generalized additive models to make predictions of pneumonia and readmission
- Learn HasAsthma(x) = LowerRiskOfDying(x)
- Why?
 - Asthmatics w/ pneumonia are prioritized
 - Get aggressive treatment, faster, in ICU
 - Treatment lowers risk of death compared to general population
- Scenario where the prescription of an intervention taints the outcomes
- The consequence:
 - Automated methods might flag asthmatics as not being problematic!

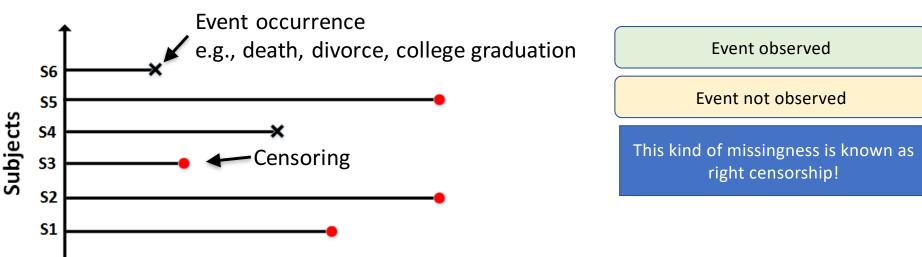
Questions?

Continuous valued outcomes for risk stratification



Labels are partially missing!

• We may not observe the outcome in the dataset – life, administrative challenges etc.



10 11 12

Time T

Censorship

- Censorship is an important to know about when handling longitudinal data
- Three types of censorship:
 - Left censored data:
 - We don't observe the *start* of an event but we do observe longitudinal data after it
 - **Example**: ICU patient's vitals are continuously recorded from when the enter. If one of the sensor fails and is later fixed, their data is left censored
 - Right censored data [focus for today]
 - We don't observe the *incidence* of an event but we know it occurs after the last observed time
 - Example: We want to predict time-to-death in the ICU as our outcome but not all people die, some survive and leave the ICU at a certain time
 - Interval censored data:
 - Both left and right censorship
 - **Example:** Neonatal unit is tracking data on children, observe data sometime after they are born and until they leave the unit (for those who survive)

What can we do when we do not observe when the event occurs?

- What do we know:
 - x: features
 - y: last observed time
 - b: whether or not the event occurs
- Option: why not throw away all datapoints for which we don't know when the event occurs:
 - Wasteful, might end up with very little data
- **Key idea** behind survival analysis:
 - Learn to predict time-to-event using all the available data that we have

Survival analysis

- To develop the ideas around survival analysis, we'll need some tools from probability theory,
- Our goal is to predict a continuous outcome:
 - We'll use random variable T to denote event time
 - We'll assume that an event can only occur in the future i.e. T > 0
- Next slide will introduce probabilistic concepts

Preliminaries – (1) - Notation

- (x, T, b) = (features, time, censoring)
 - b = 0 if censored and b = 1 if event is observed
- f(t) = p(t) = probability of death at time t; F(t) = P(T<=t) = CDF of t

- Survival function: $S(t) = P(T > t) = \int_{t}^{\infty} f(x) dx$ Hazard function: $h(t) = \lim_{\epsilon \to 0} p(T \in (t, t + \epsilon] | T \ge t)$ Cumulative hazard function: $H(t) = \int_{0}^{t} h(u) du = \int_{0}^{t} \frac{f(u)}{S(u)} du = \int_{0}^{t} \frac{-dS(u)}{S(u)} du = -\log\{S(t)\}$ Hazard function & survival function: $h(t) = \frac{f(t)}{S(t)}$

$$f(t) = h(t)S(t) = h(t) \exp\{-H(t)\}$$

$$S(t) = \exp\{-H(t)\}.$$

Slide credit: Lu Tian and Richard Olshen's course on survival analysis

Preliminaries – (2) - Visualization

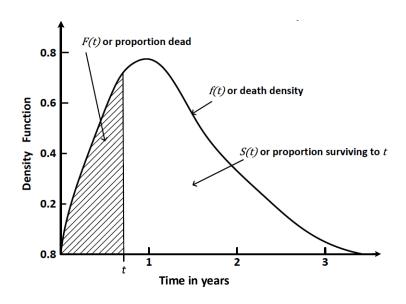


Fig. 2: Relationship among different entities f(t), F(t) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

What is a hazard function?

- Different from the probability density of event time (t)
- h(t) dt is approximately the conditional probability of the event occurring in an infinitesimal interval around t conditional on it not having occurred before t

Project resources

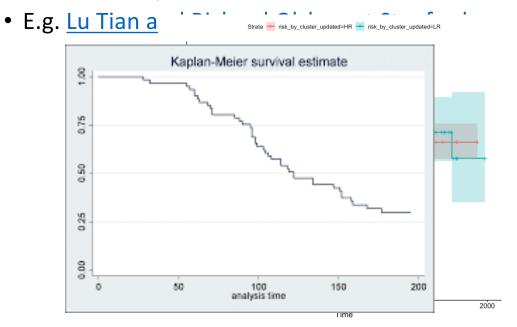
- Cancer:
 - COMMpass study: https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/
 - Starter code for processing data from the study: https://github.com/clinicalml/ml_mmrf
- Parkinson's disease
 - https://www.ppmi-info.org/
- APPLY EARLY FOR ACCESS!

Non-parametric survival analysis

- Let start by ignoring our features and asking about computing S(t) S(t) is an integral $S(t) = P(T>t) = \int_t^\infty f(x) dx$
 - Idea: If we had access to f(x) we could discretize time and evaluate f(x) in each bin and sum them up.
 - **Issue:** We don't have access to f(x) but we **do** have samples!
- Kaplan Meier curves:
 - Non-parametric estimator of the survival function S(t)
 - We do not assume anything about the underlying distribution of S(t)
 - We'll use our entire dataset to approximate the shape of S(t)

Kaplan Meier estimator

- Derivation out of scope for this class
 - Survival analysis is a rich area of research and is often a course in and of itself



Observed event times

$$y_{(1)} < y_{(2)} < \cdots < y_{(D)}$$

 $d_{(k)}$ = # events at this time

 $n_{(k)}$ = # of individuals alive and uncensored

$$\widehat{S}_{K-M}(t) = \prod_{k: y_{(k)} \le t} \left\{ 1 - \frac{d_{(k)}}{n_{(k)}} \right\}$$

Assumption 2: C_i 's are noninformative depend on the parameters

Here, the noninformativeness implies that ft depend on the parameters of interest from the Moeschberger 2003). Under the noninforms

What do wendopifametic haivenson trumbiles

Dataset

(N=100)

mator for the survival function and Nelson hile horizon the cumulative hazard function. Note that the hazard function is a probability hazard function. while noninformativeness depends on The relativity the observed model. observed event times $y_{(1)}$

model. Let y_i be the observed value of Y_i be the observed there are D_i .

Dataset [x=0] (N=35)

observed event times $y_{(k)}$ observed event and $y_{(k)}$ observed event and $y_{(k)}$ observed event and $y_{(k)}$ observed event $y_{(k)}$ observed $y_{(k)}$

at $y_{(k)}$, that is, the number of individuals who are alive and uncenso at $y_{(k)}$, that is, the number of individuals $y_{(k)}$. The Kaplan–Meier (K-M) estimator of S(t), is defined by $y_{(k)}$. The Kaplan–Meier (K-M) estimator

Evaluate KM estimator on each strata

Right [survival probability of patients who have multiple myeloma stratified by genetic marker]

$$\widehat{S}_{K-M}^{(0,0)}(t) = \prod_{\substack{t \in \mathcal{Y}(k) \leq t \\ k: y_{(k)} \leq t}} \frac{d_{(k)}}{1 - \frac{1500}{1500}} \widehat{S}_{K-M}^{(0,0)}(t) =$$

which is also called the pro

called the product-limit estiWMDLYTHESKI MESDSCHWFG with jumps at the observed event estimator under no censoring. The varianus inglicité elyment times at using Greenwood's formula:

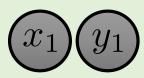
with jumps at the observed event times at the observed event times at using the left war and the variangle of the variangle. The variangle of the

using Greenwood's formula:

What if x is high-dimensional?

- Option 1: Cluster x and stratify based on clusters of x
- Option 2: Let the survival function depend on x
- This idea is used in linear regression!
- In linear regression: $y \sim \mathcal{N}(w^T x + b; 1)$
 - Outcome is a Gaussian function centered around [w^Tx + b]
 - Known as a parametric model for y:
 - There are some parameters that govern the behavior of y as a function of x

Maximum likelihood estimation for supervised learning



Dataset (N=3)

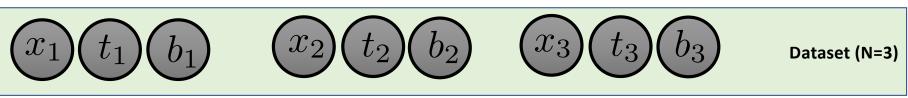
 Given a dataset, the model parameters are learned via maximum likelihood estimation

$$\mathcal{L}(y, x) = \log p(y|x; \theta)$$

Score function (high is good, low is bad)

$$heta=rg\max_{ heta}\sum_{i=1}^{N}\mathcal{L}(y_i,x_i)$$
 Solve this optimization problem to learn of the model. Often formulated as a minimization of the negative of the log-likelihood function

Maximum likelihood estimation for survival analysis



 Given a dataset, the model parameters are learned via maximum likelihood estimation

$$p(T = t|x;\theta) = f(t)$$

Uncensored likelihood

$$p(T > t|x;\theta) = S(t)$$

i=1

Censored likelihood

$$\sum_{i=0}^{N} b_{i} \log p(T = t_{i} | x_{i}; \theta) + (1 - b_{i}) \log p(T > t_{i} | x_{i}; \theta)$$

Maximize the following objective function to learn model parameters

What distribution should I use for T?

Table 2.1 Useful parametric distributions for survival analysis

Distribution
Exponential $(\lambda > 0)$
Weibull $(\lambda, \phi > 0)$
Log-normal $(\sigma > 0, \mu \in R)$
Log-logistic $(\lambda > 0, \phi > 0)$
Gamma $(\lambda, \phi > 0)$
Gompertz $(\lambda, \phi > 0)$

(parameters can be a function of x)

Survival function $S(t)$	Density function $f(t)$
$\exp(-\lambda t)$	$\lambda \exp(-\lambda t)$
$\exp(-\lambda t^{\phi})$	$\lambda \phi t^{\phi - 1} \exp(-\lambda t^{\phi})$
$1 - \Phi\{(\ln t - \mu)/\sigma\}$	$\varphi\{(\ln t - \mu)/\sigma\}(\sigma t)^{-1}$
$1/(1+\lambda t^{\phi})$	$(\lambda \phi t^{\phi - 1})/(1 + \lambda t^{\phi})^2$
$1 - I(\lambda t, \phi)$	$\{\lambda^{\phi}/\Gamma(\phi)\}t^{\phi-1}\exp(-\lambda t)$
$\exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$	$\lambda e^{\phi t} \exp\{\frac{\lambda}{\phi}(1 - e^{\phi t})\}$

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

CoxPH: Interpretability in survival analysis

- Parametric models that depend on x change parameters of a distribution in linear/non-linear ways as a function of x
- Goal:
 - Link variation to covariates directly to the survival function
- The <u>Cox Proportional Hazard's model</u> is one of the most popular tools in survival analysis

$$h(t|X=x;\theta) = \underbrace{h_0(t)} \exp(\beta^T x)$$

Baseline hazard

Baseline hazard reflects the hazard for subjects with all covariates equal to 0

Interpretation in the univariate case

$$\frac{h(t|X = x_1; \theta)}{h(t|X = x_2; \theta)} = \frac{\exp(\beta^T x_1)}{\exp(\beta^T x_2)} \quad \frac{h(t|X = x + 1)}{h(t|X = x)} = \exp(\beta)$$

Hazard ratio is independent of time

Parameters have an intuitive meaning

CoxPH: Linear model for log of the hazard ratio

CoxPH for binary data

• X = [received drug (0 no, 1 yes), gender (0 male, 1 female)]

$$h(t|x_1, x_2) = h_0(t) \exp(\beta_1 z_1 + \beta_2 z_2)$$

$$h(t|X)=h_0(t)$$
 No treatment Male $h(t|X)=h_0(t)\exp(eta_1)$ Yes treatment Male $h(t|X)=h_0(t)\exp(eta_2)$ No treatment Female $h(t|X)=h_0(t)\exp(eta_1+eta_2)$ Yes treatment Female

Key advantage of the CoxPH model

- ullet We can estimate the model parameters eta
- Notably we can do so without estimating the baseline hazard
- This is a semi-parametric model
 - We make no assumptions about the baseline hazard rate
 - However, we learn parameters that dictate how it is modified based on patient covariates
- How do we learn this model?
 - Won't derive from scratch in this class but we'll discuss the algorithm
 - a useful exercise if this is your area of research
 - come to my office hours if you're interested in pursuing a project around this!
 - Useful reference: Course notes by Ronghui (Lily) Xu

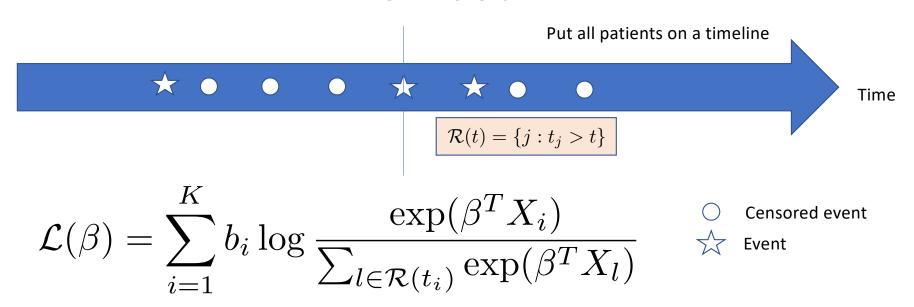
Cox Partial Likelihood

- 1. Loss function used for learning the Cox Proportional Hazards model
- 2. Scan from left to right in time, at each discrete point, calculate the risk set and the loss
- 3. Sum up the losses and use gradient based methods for parameter estimation

$$\mathcal{R}(t) = \{j : t_j \ge t\}$$

$$\mathcal{L}(\beta) = \sum_{i=1}^{K} b_i \log \frac{\exp(\beta^T X_i)}{\sum_{l \in \mathcal{R}(t_i)} \exp(\beta^T X_l)}$$

Visualizing the computation of the partial likelihood



Intuition: How likely are the features of this patient to explain their elevated risk of having the event occur now compared to all the individuals whose event occurs later!

Advances in machine learning for survival analysis

- DeepSurv, Katzman et. al, 2017
 - One of the readings for this week uses a deep neural network to parameterize the modification to the hazard function
 - Parameter estimation by taking derivatives of the
- Advanced reading Deep survival analysis, Ranganath et. al, 2016
 - What if x is very high dimensional?
 - Rather than condition on x directly, learn a latent representation of x while jointly modeling survival time

n performance in survers ahalysts opedine se medicured asing mores specialized aluation metrics.

Machine Learning for Survival Analysis: A Survey: — predicts how well the model survival analysis, a common way to evaluate a model is to consider the relative risk an event for his patients pased one survival line of the survival time. (2) for the survival methods, which aim at directly learning the survival time, the lex (C-index) [Harrell et al. 1984; Harrell et al. 1982; Pencina and D'Agostino 2004]. e survival times of two instances can be or tered for two scenarios; (1) both of them e uncensored; (2) the observed event time of the uncensored instance is smaller than e censoring time of the censored instance is smaller than the ownered graph threating are survival babilities are 4(b) are used to illusticated.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng defined the C-index for a fixed follow-up the period $(\bullet t^*)$ as the weighted average of AUC values at all possible observation time points [Heagerty and Zheng 2005]. The time-dependent AUC to rank specific survival time t can be calculated as

$$AUC(t) = P(\hat{y}_i < \hat{y}_j | y_i < t, y_j > t) = \frac{1}{num(t)} \sum_{i:y_i < t} \sum_{j:y_i > t} I(\hat{y}_i < \hat{y}_j)$$
(23)

x4. Illustration of the ranking constraints in survival data for C-index calculations where $t \in T_s$ which is the set of all possible survival times and num(t) represents the x1. Here, black circles indicate the observed events and red number of comparable pairs for the time point t. Then the C-index during the time cles indicate, the tensored observations. (a) No censored data and (b) with consored t2.

Other ways to evaluate models

- Mean squared error [for just those who are uncensored]
- Held out likelihood (censored + uncensored)

Questions?

Why not use classification?

This can be a reasonable option when data is scarce,

Thresholds for classification may not be known at training time,

Why not use regression?

When outcomes are missing [event time not observed] you may have to throw data out

- Leads to limited training data
- Might introduce bias into the dataset