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Time Series in Healthcare

Wearables Physiological signals Patient records
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Time series is a data modality rich in information that captures 
historical context and trajectory of events over time.



Challenges with real-world Time Series
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The complexity of time series 
becomes a barrier to building 
generalizable ML models.

Rajkomar, Alvin, et al. 
"Scalable and accurate 
deep learning with 
electronic health 
records." NPJ digital 
medicine 1.1 (2018): 18.

● Irregular measurements
● Multi-modality
● Lack/quality of labels
● Multiple confounders
● Missing measurements
● …



Representation 
learning for Time series
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Representation Learning
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Create representations of the data that 
summarizes key characteristics of the data 
for machine learning models

● Embedding

● Feature Engineering

● Task-specific 

● Self-supervised

Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2017). Using 
recurrent neural network models for early detection of heart 
failure onset. Journal of the American Medical Informatics 
Association, 24(2), 361-370.



Representation Learning
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Create representations of the data that 
summarizes key characteristics of the data 
for machine learning models

● Embedding

● Feature Engineering

● Task-specific 

● Self-supervised

Rajkomar, Alvin, et al. "Scalable and accurate deep learning with 
electronic health records." NPJ digital medicine 1.1 (2018): 18.



Representation Learning
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Create representations of the data that 
summarizes key characteristics of the data 
for machine learning models

● Embedding

● Feature Engineering

● Task-specific 

● Self-supervised

De Bois, M., El Yacoubi, M. A., & Ammi, M. (2021). Adversarial multi-source transfer 
learning in healthcare: Application to glucose prediction for diabetic people. 
Computer Methods and Programs in Biomedicine, 199, 105874.



Representation Learning
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Create representations of the data that 
summarizes key characteristics of the data 
for machine learning models

● Embedding

● Feature Engineering

● Task-specific 

● Self-supervised
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● High-dimensional/high-frequency
● Limited prior knowledge
● Expensive to label over time
● Non-stationary with multiple 

confounders



Self-Supervised 
Representation 
learning for Time series
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Reconstruction-based methods

Chorowski, J., Weiss, R. J., Bengio, S., & Van Den Oord, A. (2019). Unsupervised 
speech representation learning using wavenet autoencoders. IEEE/ACM 
transactions on audio, speech, and language processing, 27(12), 2041-2053.

ELBO:
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Reconstruction-based methods

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., & Rätsch, G. (2018, September). SOM-VAE: 
Interpretable Discrete Representation Learning on Time Series. In International Conference on 
Learning Representations.

SOM-VAE
Enforces topological structure in a lower dimensional space through Self-Organizing Maps such that the 
representations retain their smoothness in that space
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Reconstruction-based methods

Dezfouli, A., Ashtiani, H., Ghattas, O., Nock, R., Dayan, P., & Ong, C. S. (2019). Disentangled behavioural 
representations. Advances in neural information processing systems, 32
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Reconstruction

Disentanglement

Separation
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Predictive methods

Choi, E., Bahadori, M. T., Searles, E., Coffey, C., Thompson, M., Bost, J., ... & Sun, J. (2016, August). Multi-layer 
representation learning for medical concepts. In proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining (pp. 1495-1504).

Med2Vec
Trains an encoder neural network to learn 
representations that are predictive of future 
medical codes of visits within a context 
window. 
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Predictive/contrastive methods

Oord, A. V. D., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive 
coding. arXiv preprint arXiv:1807.03748.

Contrastive Predictive Coding

Contrastive Loss
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Contrastive methods

Franceschi, J. Y., Dieuleveut, A., & Jaggi, M. (2019). Unsupervised scalable representation 
learning for multivariate time series. Advances in neural information processing systems, 32.

Representation learning with 
triplet loss

Triplet Loss



Temporal Neighborhood Coding (TNC)
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TNC is a self-supervised framework for learning representations of 
multivariate, non-stationary time series.
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Encoder
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Encoder

S. Tonekaboni, D. Eytan, A.  Goldenberg. Unsupervised Representation Learning for Time Series with 
Temporal Neighborhood Coding. In International Conference on Learning Representations (ICLR 
2020).



Temporal Neighborhood 
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neighborhood range using 
ADF test of stationarity

Temporal neighborhood       of  window        is the set of windows with centroids                          
representing the region of time series  with similar underlying state. 



Contrastive Objective
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Weight adjustment from PU learning to 
account for sampling bias



What makes a representation a 
good representations?
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What makes a good representations?

1) clusterability of the underlying states.

2) Generalizability for downstream classification.
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What makes a good representations?

2) Generalizability for downstream 
tasks.
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What makes a good representations?

3) Identifies changes in time
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CPA



Where do you see potential for 
unsupervised representation 

learning in healthcare?
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Tracking and gaining insight into individual’s health

Knowledge discovery

Disease subtypes

Understanding population heterogeneity 



Better understanding 
representations
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Decoupled Representation Learning

Time series data is generated from two independent sources of variation: 

• Global variable: representation of the global behaviour of a time series
• Local variable: characterizes within sample variability and behaviours 

such as non stationarity 

Age

Health

Sex

Activity

Time of Day

Temperature
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Blood Pressure (mmHG)

Tonekaboni, S., Li, C. L., Arik, S. O., Goldenberg, A., & Pfister, T. (2022, May). Decoupling local and global 
representations of time series. In International Conference on Artificial Intelligence and Statistics 
(AISTATS) (pp. 8700-8714). PMLR.



Generative Model
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Zg

ZTZ0 Z1 Z2

Every window of time series is generated from an 
underlying global and local variable.



28

Counterfactual Regularization: 
Disentangle global and local 

factors

Variational Inference:



Why understanding 
representations is important?

29


