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Time Series in Healthcare

Wearables Physiological signals Patient records

Time series is a data modality rich in information that captures
historical context and trajectory of events over time.
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Challenges with real-world Time Series
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Representation ,
learning for Time series
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Representation Learning

Create representations of the data that
summarizes key characteristics of the data
for machine learning models

e Embedding
e F[eature Engineering
e Task-specific

e Self-supervised
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A N-dimensional vector
Fever: [1,0,0,0,0,...,0,0,0
Lorazepam: [0,1,0,0,0,...,0,0,
Chest X-ray: [0,0,1,0,0,...,0,0,0]
Pneumonia: [0,0,0,1,0,...,0,0,

—

N unique events

Benzonatate: [0,0,0,0,0, ...,0. 1,0]
Cough: [0,0,0,0,0,...,0,0, 1]
B Benzonatate Pneumonia Amoxicillin Prediction
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Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2017). Using
recurrent neural network models for early detection of heart
failure onset. Journal of the American Medical Informatics
Association, 24(2), 361-370.
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Representation Learning il ddadas
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Create representations of the data that o
summarizes key characteristics of the data
for machine learning models
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Representation Learning

Create representations of the data that
summarizes key characteristics of the data

for machine learning models

e Embedding
e Feature Engineering
e Task-specific

e Self-supervised
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De Bois, M., El Yacoubi, M. A., & Ammi, M. (2021). Adversarial multi-source transfer

learning in healthcare: Application to glucose prediction for diabetic people.
Computer Methods and Programs in Biomedicine, 199, 105874.



Representation Learning

Create representations of the data that
summarizes key characteristics of the data
for machine learning models

e Embedding
e F[eature Engineering
e Task-specific .

e Self-supervised N

High-dimensional/high-frequency
Limited prior knowledge
Expensive to label over time
Non-stationary with multiple
confounders

~

Blood
Pressure
(MmmHGQG)
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Self-Supervised
Representation )
learning for Time series
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Reconstruction-based methods

SOM-VAE

Enforces topological structure in a lower dimensional space through Self-Organizing Maps such that the
representations retain their smmoothness in that space

input encoder latent encodings Markov model decoder reconstruction
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map .z 4 A P(zqt+1|zqt)

Ereconstruction (33, jq7 :f;e) + « Ecommitment(x) vy IB ESOM (SU)

‘c(mt_la xta ﬁfp i'e) = £SOM-VAE($t7 jz, QZ) e A Leansitions (mt—l, xt) A T L:smoothness(xt_1 , xt)

Fortuin, V., HUser, M., Locatello, F., Strathmann, H., & Ratsch, G. (2018, September). SOM-VAE:

Interpretable Discrete Representation Learning on Time Series. In International Conference on

Learning Representations.
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Reconstruction-based methods
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Predictive methods

Med2Vec

Trains an encoder neural network to learn
representations that are predictive of future
medical codes of visits within a context

window.
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bl TORONTO conference on knowledge discovery and data mining (pp. 1495-1504).

Choi, E., Bahadori, M. T, Searles, E., Coffey, C., Thompson, M., Bost, J., ... & Sun, J. (2016, August). Multi-layer
representation learning for medical concepts. In proceedings of the 22nd ACM SIGKDD international
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Predictive/contrastive methods

Contrastive Predictive Coding

Predictions

fr(Tesk,ct) = exp (zﬁkact)
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Contrastive Loss

@ Oord, A. V. D, Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive
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Contrastive methods

Representation learning with v,

triplet loss
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Temporal Neighborhood Coding (TNC)

TNC is a self-supervised framework for Ilearning representations of

multivariate, non-stationary time series.
Zt
Encoder
r DT

Discriminator

W, € RDX5 b b
S L@ (@) © O
1 ! O | :
: o ! :
-+ 1 ! ! :
£E8 O | o S o . o O o ©
[ ® i o | Y i :
i ° e e 0 O
________________________________________________ Time
: 16
UNIVERSITY OF S. Tonekaboni, D. Eytan, A. Goldenberg. Unsupervised Representation Learning for Time Series with

TORONTO Temporal Neighborhood Coding. In International Conference on Learning Representations (ICLR
2020).



Temporal Neighborhood

Temporal neighborhoodN; of window W; is the set of windows with centroidd ~ N/ (¢, nd)
representing the region of time series with similar underlying state.

neighborhood range using
ADF test of stationarity

i W; € N,
:Wt """" : “lt (¢} o @ o
: o 1 T %

) @] o () © | | :

8 ° I : | I

= © ° % @ : ol O o o

v T PS + 1 O ¢ :

Eq“_’ ® ) | I. | : o o
| [ : o (]
| [ p— —

Ti >
@ UNIVERSITY OF tme t l ~ N(t, 7']5)

& TORONTO 17



Contrastive Objective
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What makes a representation a
good representations?
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-20

-30

What makes a good representations?

1) clusterability of the underlying states.

2) Generalizability for downstream classification.

Triplet Loss
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What makes a good representations?

Risk of mortality over time

2) Generalizability for downstream 055
tasks.

Local Rep.

Time series Sample Trajectory
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What makes a good representations?

3) Identifies changes in time

Physiological Signals

—— Pulse — Sp02

o
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Where do you see potential for
unsupervised representation
learning in healthcare?
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Tracking and gaining insight into individual's health

0.5
Knowledge discovery 04
0.3

0.2

f2

Disease subtypes N
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Understanding population heterogeneity
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Better understanding
representations
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Decoupled Representation Learning

Time series data is generated from two independent sources of variation:

Global variable: representation of the global behaviour of a time series

Local variable: characterizes within sample variability and behaviours
such as non stationarity

Blood Pressure (mmHQ) @
ih Ace

Activity W
%S‘@ Health | Time of Day
(_;_) Sex

Temperature %&

Tonekaboni, S, Li, C. L., Arik, S. O., Goldenberg, A., & Pfister, T. (2022, May). Decoupling local and global
UNIVERSITY OF representations of time series. In International Conference on Artificial Intelligence and Statistics
2 TORONTO (AISTATS) (pp. 8700-8714). PMLR.
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Generative Model

Every window of time series is generated from an
underlying global and local variable. p(Xt.t15|2¢, Z4)

Z, = [20; 215 . - ;%4 A\

Z, = [z0;21; ;%
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Variational Inference:;
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Why understanding
representations is important?
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